If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-0.126=0
a = 1; b = 1; c = -0.126;
Δ = b2-4ac
Δ = 12-4·1·(-0.126)
Δ = 1.504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1.504}}{2*1}=\frac{-1-\sqrt{1.504}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1.504}}{2*1}=\frac{-1+\sqrt{1.504}}{2} $
| 4(z+-6)=-12 | | H(x)=2-4x | | 150m-125m+42975=46125-200m | | 4=1/2h(2+6) | | 5x/18+1/9=2x/9 | | -17-18z=-3z+13 | | 4-13=2x+9 | | 810=-490t^2 | | 3r-18=4r | | .350=x/692 | | G(x)=-1/2x+9 | | 4x+6x-2x=14-10 | | 8x-6x=(9x)-5x | | u=-1/2 | | 2(x+4)=3x+-7 | | 1/11+3/8y=5/12+5/8y | | 1/3x+x=20 | | 49x^2+210x+225=0 | | 9x+11x+-18=2 | | 7u+41=-2(u-7) | | z-6=13 | | 2x/3+3=-1 | | 20/40=x/10 | | G(x)=-1|2x+9 | | m=2(3,1) | | 25+2x/3=35-x | | 810=-490t^2+1260t | | -4(10-7x)+5(-8x+8)=-4x-8x | | 12-10x+5x=22 | | .350=m÷692 | | 4.01(k-13)+1.22=9.24 | | 1/2(x+2/3)=3(x-1) |